Voltage-dependent calcium release in human malignant hyperthermia muscle fibers.

نویسندگان

  • A Struk
  • F Lehmann-Horn
  • W Melzer
چکیده

Malignant hyperthermia (MH) results from a defect of calcium release control in skeletal muscle that is often caused by point mutations in the ryanodine receptor gene (RYR1). In malignant hyperthermia-susceptible (MHS) muscle, calcium release responds more sensitively to drugs such as halothane and caffeine. In addition, experiments on the porcine homolog of malignant hyperthermia (mutation Arg615Cys in RYR1) indicated a higher sensitivity to membrane depolarization. Here, we investigated depolarization-dependent calcium release under voltage clamp conditions in human MHS muscle. Segments of muscle fibers dissected from biopsies of the vastus lateralis muscle of MHN (malignant hyperthermia negative) and MHS subjects were voltage-clamped in a double vaseline gap system. Free calcium was determined with the fluorescent indicator fura-2 and converted to an estimate of the rate of SR calcium release. Both MHN and MHS fibers showed an initial peak of the release rate, a subsequent decline, and rapid turn-off after repolarization. Neither the kinetics nor the voltage dependence of calcium release showed significant deviations from controls, but the average maximal peak rate of release was about threefold larger in MHS fibers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of ryanodine receptor mutations on interleukin-6 release and intracellular calcium homeostasis in human myotubes from malignant hyperthermia-susceptible individuals and patients affected by central core disease.

In this study we report for the first time the functional properties of human myotubes isolated from patients harboring the native RYR1 I4898T and R4893W mutations linked to central core disease. We examined two aspects of myotube physiology, namely excitation-contraction and excitation-secretion coupling. Our results show that upon activation of the ryanodine receptor (RYR), myotubes release i...

متن کامل

Mg2+ dependence of halothane-induced Ca2+ release from the sarcoplasmic reticulum in skeletal muscle from humans susceptible to malignant hyperthermia.

BACKGROUND Recent work suggests that impaired Mg(2+) regulation of the ryanodine receptor is a common feature of both pig and human malignant hyperthermia. Therefore, the influence of [Mg(2+)] on halothane-induced Ca(2+) release from the sarcoplasmic reticulum was studied in malignant hyperthermia-susceptible (MHS) or -nonsusceptible (MHN) muscle. METHODS Vastus medialis fibers were mechanica...

متن کامل

Voltage-sensor control of Ca2+ release in skeletal muscle: insights from skinned fibers.

Important aspects of the excitation-contraction (EC) coupling process in skeletal muscle have been revealed using mechanically-skinned fibers in which the transverse-tubular system can be depolarized by ion substitution or electrical stimulation, activating the voltage-sensors which in turn open the Ca2+ release channels in the adjacent sarcoplasmic reticulum (SR). Twitch and tetanic force resp...

متن کامل

Increased sensitivity of the ryanodine receptor to halothane-induced oligomerization in malignant hyperthermia-susceptible human skeletal muscle.

Mutations in the skeletal muscle RyR1 isoform of the ryanodine receptor (RyR) Ca2+-release channel confer susceptibility to malignant hyperthermia, which may be triggered by inhalational anesthetics such as halothane. Using immunoblotting, we show here that the ryanodine receptor, calmodulin, junctin, calsequestrin, sarcalumenin, calreticulin, annexin-VI, sarco(endo)plasmic reticulum Ca2+-ATPas...

متن کامل

Effects of a domain peptide of the ryanodine receptor on Ca release in skinned skeletal muscle fibers

Lamb, Graham D., Giuseppe S. Posterino, Takeshi Yamamoto, and Noriaki Ikemoto. Effects of a domain peptide of the ryanodine receptor on Ca21 release in skinned skeletal muscle fibers. Am J Physiol Cell Physiol 281: C207–C214, 2001.—Mutations in the central domain of the skeletal muscle ryanodine receptor (RyR) cause malignant hyperthermia (MH). A synthetic peptide (DP4) in this domain (Leu-2442...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 75 5  شماره 

صفحات  -

تاریخ انتشار 1998